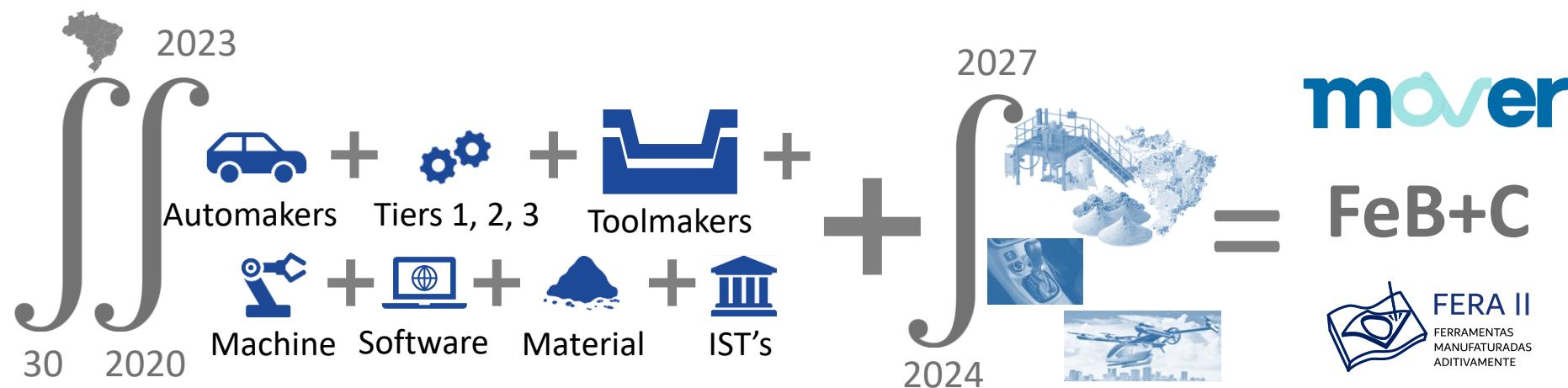


FERA II


FERRAMENTAS MANUFATURADAS ADITIVAMENTE

CONSORTIAL PROJECT

Prof. Dr. Ronnie Rego
Prof. Dr. Luís Gonzaga Trabasso
Prof. Dr. h. c. Dr.-Ing., Eckart Uhlman
Prof. Dr. Aloísio Nelmo Klein
Me. Moysés Leite de Lima

April 30th, 2024

FERA II - Ferramentas Manufaturadas Aditivamente: Partners Network

FERA II: Project Background

Program FEB+C

FERRAMENTARIAS BRASILEIRAS MAIS COMPETITIVAS
is a ROTA 2030 Program for the development of the Tooling Sector

FUNDEP 03/2020 call for projects launched in April 2020:
Disruptive Research and Development (TRL 2-4)

ADDITIVE MANUFACTURING (AM) WAS A MAIN PROJECT THEME

Background

Several Joint Additive Manufacturing initiatives background between STI's

Project proposal


FERA
FERRAMENTAS MANUFATURADAS ADITIVAMENTE

To integrate STI's and companies to place the national AM for Tooling in the same competitiveness level of leading countries

> 100 meetings with partners for the Project's elaboration from industrial demands

- **Aug/2020:** FERA Project Submission
- **Oct/2020:** Project Approval
- **Mar/2021:** Project Kick-Off
- **2021 – 2023:** FERA Project Execution
- **Out/2023:** FERA II Project Submission
- **April/2024:** FERA II Approval
- :

FERA II

FERRAMENTAS
MANUFATURADAS
ADITIVAMENTE

R\$56.2 million

Semi-automated repair, Manufacture of complex geometries,
Industry training, Scientific disclosure, International
Benchmark, technical-economic feasibility panorama

Additive Manufacturing is a technology with disruptive potential to increase the competitiveness of the Tooling Chain. However, application is not mature.

Increase the spread of additive manufacturing in the Brazilian industrial sector and develop domestic raw materials to supply the production chain with larger volumes of production

3 years

Companies (Economical)

2.2 mi

4%

STI's (Economical)

4.5 mi

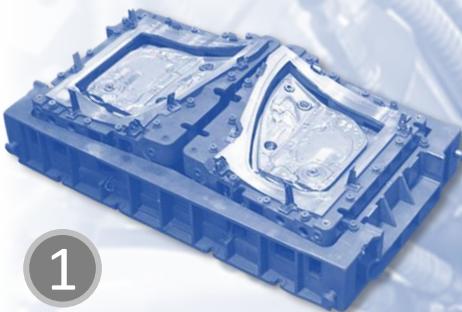
9%

Government
R\$ 49.5 mi

87%

FERA II: Specific objectives of competitiveness

... with the specific objectives of:

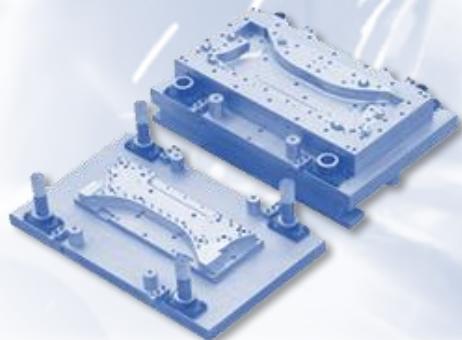
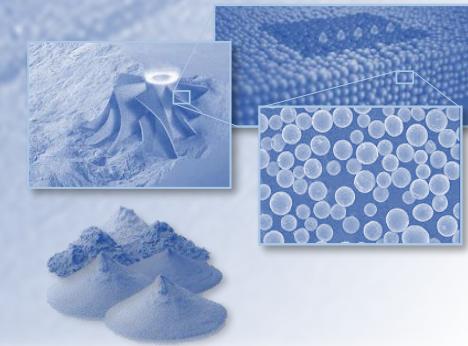

To develop and validate...	Performance	Productivity	Costs
Know-how in alloy engineering for additive manufacturing based on national minerals	✓		
Development of atomization processes nationwide	✓	✓	✓
Optimization of methods for semi-automated inspection and repair by additive manufacturing	✓	✓	✓
Functional verification based on bench tests for components manufactured in MA	✓	✓	
Development of component qualification methods	✓	✓	
Development of an implementation guide for an additive manufacturing cell	✓	✓	✓
Nationalization of metal powder atomization equipment technologies		✓	✓
Decision guide for metal additive manufacturing	✓	✓	✓

FERA II

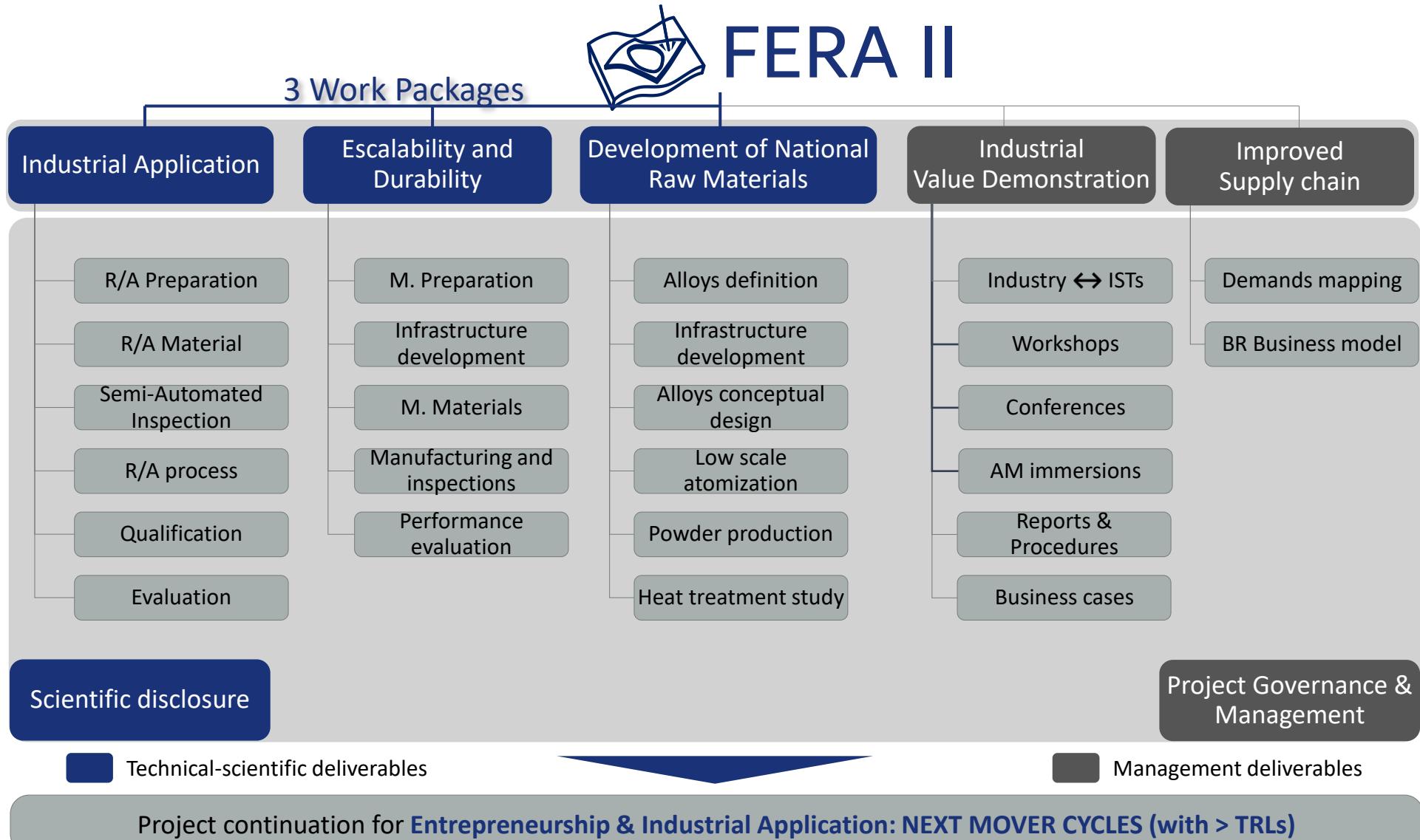
FERRAMENTAS
MANUFATURADAS
ADITIVAMENTE

1

Industrial Application



2

Scalability and
Durability



3

Development of
National Raw Materials

FERA II: Scope – Simplified Work Breakdown Structure

Coordination Level

GOVERNANCE

Ministry of Economy

Rota 2030 L(IV) - Program Committee
IPT, FUNDEP, Technical Counsel

R\$ - Resource transfer

Project Steering Committee
- STI's Coordinators
- Company representatives

Technical Level

Technical Team

- Project Manager

- STI's Team Leaders

- Company Teams

Steering Committee Meetings (Symposia)

1st year	2nd year	3rd year
Q4/2024	Q2/2026	Q2/2027
Q4/2025	Q4/2026	Q4/2027

Steering Committee Meeting Participants

Coordination Level

Representative from Fundep

Representative from IPT

Representative from the Tech. Counsel

STI's Coordinators

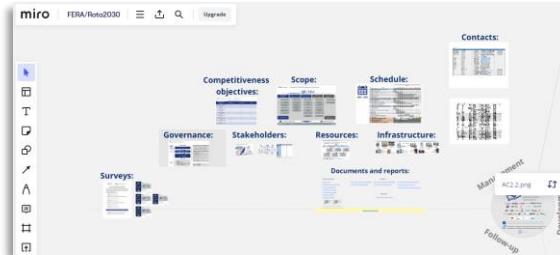
Representatives from the Companies

Technical Level

- Project Manager and STI's Team Leaders

Follow-up meetings

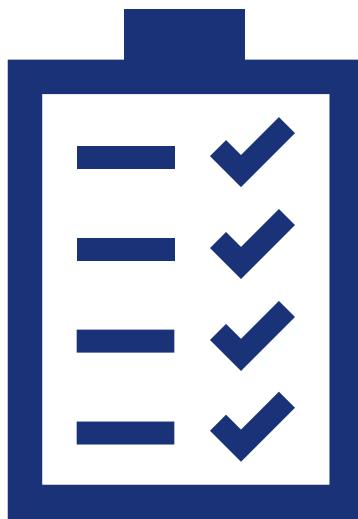
Regularly scheduled



CONFIDENTIAL

Project Knowledge and Communication Management

Meetings plan


MIRO platform will be used to share and follow the developments

Meeting	Format	Frequency	Attendees
Symposia	In-person	Biannual	Steering Committee
Follow-up WP1	Virtual	Monthly	STIs and Companies
Follow-up WP2	Virtual	Monthly	STIs and Companies
Follow-up WP3	Virtual	Monthly	STIs and Companies
STI's follow-up	Virtual	Bi-Weekly	STIs
Immersions	In-person	Scheduled	STIs and Companies

Follow-ups with companies will happen once a month

CONFIDENTIAL

- Semi automated repair methods for tools repair
- AM tools manufacturing chains
- State-of-the-art of AM materials for tooling
- AM deposition in cast iron development
- Surface integrity assessments
- AM tools validation
- AM Decision support guide
- High volume AM manufacturing development
- Technical-economic feasibility analysis for Brazil
- Scientific research publications
- Industrial training
- Projects for next MOVER calls

UNIVERSIDADE FEDERAL
DE SANTA CATARINA

 Fraunhofer
IPK

INSTITUTO SENAI
DE INOVAÇÃO LASER

1pt
INSTITUTO DE
PESQUISAS
TECNOLOGICAS

Obrigado!
Thank you!

Ronnie Rego, Prof. Dr.

Luís Gonzaga Trabasso, Prof. Dr.

Aloísio Nelmo Klein, Prof. Dr.

Eckart Uhlman, Prof. Dr. h. c. Dr.-Ing.

Moysés Leite de Lima, Me.

UNIVERSIDADE FEDERAL
DE SANTA CATARINA

 Fraunhofer
IPK

INSTITUTO SENAI
DE INOVAÇÃO LASER

1pt
INSTITUTO DE
PESQUISAS
TECNOLOGICAS

Obrigado!
Thank you!

Ronnie Rego, Prof. Dr.

Luís Gonzaga Trabasso, Prof. Dr.

Aloísio Nelmo Klein, Prof. Dr.

Eckart Uhlman, Prof. Dr. h. c. Dr.-Ing.

Moysés Leite de Lima, Me.